Skip to content

spikeglx.py

SpikeGLX

Source code in element_array_ephys/readers/spikeglx.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
class SpikeGLX:
    def __init__(self, root_dir):
        """
        create neuropixels reader from 'root name' - e.g. the recording:

            /data/rec_1/npx_g0_t0.imec.ap.meta
            /data/rec_1/npx_g0_t0.imec.ap.bin
            /data/rec_1/npx_g0_t0.imec.lf.meta
            /data/rec_1/npx_g0_t0.imec.lf.bin

        would have a 'root name' of:

            /data/rec_1/npx_g0_t0.imec

        only a single recording is read/loaded via the root
        name & associated meta - no interpretation of g0_t0.imec, etc is
        performed at this layer.
        """
        self._apmeta, self._ap_timeseries = None, None
        self._lfmeta, self._lf_timeseries = None, None

        self.root_dir = pathlib.Path(root_dir)

        try:
            meta_filepath = next(pathlib.Path(root_dir).glob("*.ap.meta"))
        except StopIteration:
            raise FileNotFoundError(f"No SpikeGLX file (.ap.meta) found at: {root_dir}")

        self.root_name = meta_filepath.name.replace(".ap.meta", "")

    @property
    def apmeta(self):
        if self._apmeta is None:
            self._apmeta = SpikeGLXMeta(self.root_dir / (self.root_name + ".ap.meta"))
        return self._apmeta

    @property
    def ap_timeseries(self):
        """
        AP data: (sample x channel)
        Data are stored as np.memmap with dtype: int16
        - to convert to microvolts, multiply with self.get_channel_bit_volts('ap')
        """
        if self._ap_timeseries is None:
            self.validate_file("ap")
            self._ap_timeseries = self._read_bin(
                self.root_dir / (self.root_name + ".ap.bin")
            )
        return self._ap_timeseries

    @property
    def lfmeta(self):
        if self._lfmeta is None:
            self._lfmeta = SpikeGLXMeta(self.root_dir / (self.root_name + ".lf.meta"))
        return self._lfmeta

    @property
    def lf_timeseries(self):
        """
        LFP data: (sample x channel)
        Data are stored as np.memmap with dtype: int16
        - to convert to microvolts, multiply with self.get_channel_bit_volts('lf')
        """
        if self._lf_timeseries is None:
            self.validate_file("lf")
            self._lf_timeseries = self._read_bin(
                self.root_dir / (self.root_name + ".lf.bin")
            )
        return self._lf_timeseries

    def get_channel_bit_volts(self, band="ap"):
        """
        Extract the recorded AP and LF channels' int16 to microvolts - no Sync (SY) channels
        Following the steps specified in: https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip
                dataVolts = dataInt * Vmax / Imax / gain
        """
        vmax = float(self.apmeta.meta["imAiRangeMax"])

        if band == "ap":
            imax = IMAX[self.apmeta.probe_model]
            imroTbl_data = self.apmeta.imroTbl["data"]
            imroTbl_idx = 3
            chn_ind = self.apmeta.get_recording_channels_indices(exclude_sync=True)

        elif band == "lf":
            imax = IMAX[self.lfmeta.probe_model]
            imroTbl_data = self.lfmeta.imroTbl["data"]
            imroTbl_idx = 4
            chn_ind = self.lfmeta.get_recording_channels_indices(exclude_sync=True)
        else:
            raise ValueError(f'Unsupported band: {band} - Must be "ap" or "lf"')

        # extract channels' gains
        if "imDatPrb_dock" in self.apmeta.meta:
            # NP 2.0; APGain = 80 for all AP (LF is computed from AP)
            chn_gains = [AP_GAIN] * len(imroTbl_data)
        else:
            # 3A, 3B1, 3B2 (NP 1.0)
            chn_gains = [c[imroTbl_idx] for c in imroTbl_data]

        chn_gains = np.array(chn_gains)[chn_ind]

        return vmax / imax / chn_gains * 1e6  # convert to uV as well

    def _read_bin(self, fname):
        nchan = self.apmeta.meta["nSavedChans"]
        dtype = np.dtype((np.int16, nchan))
        return np.memmap(fname, dtype, "r")

    def extract_spike_waveforms(self, spikes, channel_ind, n_wf=500, wf_win=(-32, 32)):
        """
        :param spikes: spike times (in second) to extract waveforms
        :param channel_ind: channel indices (of shankmap) to extract the waveforms from
        :param n_wf: number of spikes per unit to extract the waveforms
        :param wf_win: number of sample pre and post a spike
        :return: waveforms (in uV) - shape: (sample x channel x spike)
        """
        channel_bit_volts = self.get_channel_bit_volts("ap")[channel_ind]

        data = self.ap_timeseries

        spikes = np.round(spikes * self.apmeta.meta["imSampRate"]).astype(
            int
        )  # convert to sample
        # ignore spikes at the beginning or end of raw data
        spikes = spikes[
            np.logical_and(spikes > -wf_win[0], spikes < data.shape[0] - wf_win[-1])
        ]

        np.random.shuffle(spikes)
        spikes = spikes[:n_wf]
        if len(spikes) > 0:
            # waveform at each spike: (sample x channel x spike)
            spike_wfs = np.dstack(
                [
                    data[int(spk + wf_win[0]) : int(spk + wf_win[-1]), channel_ind]
                    * channel_bit_volts
                    for spk in spikes
                ]
            )
            return spike_wfs
        else:  # if no spike found, return NaN of size (sample x channel x 1)
            return np.full((len(range(*wf_win)), len(channel_ind), 1), np.nan)

    def validate_file(self, file_type="ap"):
        file_path = self.root_dir / (self.root_name + f".{file_type}.bin")
        file_size = file_path.stat().st_size

        if file_type == "ap":
            meta = self.apmeta
        elif file_type == "lf":
            meta = self.lfmeta
        else:
            raise KeyError(f"Unknown file_type {file_type} - must be 'ap' or 'lf'")

        if file_size != meta.meta["fileSizeBytes"]:
            raise IOError(
                f"File size error! {file_path} may be corrupted or in transfer?"
            )

    def compress(self):
        from mtscomp import compress as mts_compress

        ap_file = self.root_dir / (self.root_name + ".ap.bin")
        lfp_file = self.root_dir / (self.root_name + ".lf.bin")

        meta_mapping = {"ap": self.apmeta, "lfp": self.lfmeta}

        compressed_files = []
        for bin_fp, band_type in zip([ap_file, lfp_file], ["ap", "lfp"]):
            if not bin_fp.exists():
                raise FileNotFoundError(
                    f'Compression error - "{bin_fp}" does not exist'
                )
            cbin_fp = bin_fp.parent / f"{bin_fp.stem}.cbin"
            ch_fp = bin_fp.parent / f"{bin_fp.stem}.ch"

            if cbin_fp.exists():
                assert ch_fp.exists()
                logger.info(f"Compressed file exists ({cbin_fp}), skipping...")
                continue

            try:
                mts_compress(
                    bin_fp,
                    cbin_fp,
                    ch_fp,
                    sample_rate=meta_mapping[band_type]["sample_rate"],
                    n_channels=meta_mapping[band_type]["num_channels"],
                    dtype=np.memmap(bin_fp).dtype,
                )
            except Exception as e:
                cbin_fp.unlink(missing_ok=True)
                ch_fp.unlink(missing_ok=True)
                raise e
            else:
                compressed_files.append((cbin_fp, ch_fp))

        return compressed_files

    def decompress(self):
        from mtscomp import decompress as mts_decompress

        ap_file = self.root_dir / (self.root_name + ".ap.bin")
        lfp_file = self.root_dir / (self.root_name + ".lf.bin")

        decompressed_files = []
        for bin_fp, band_type in zip([ap_file, lfp_file], ["ap", "lfp"]):
            if bin_fp.exists():
                logger.info(f"Decompressed file exists ({bin_fp}), skipping...")
                continue

            cbin_fp = bin_fp.parent / f"{bin_fp.stem}.cbin"
            ch_fp = bin_fp.parent / f"{bin_fp.stem}.ch"

            if not cbin_fp.exists():
                raise FileNotFoundError(
                    f'Decompression error - "{cbin_fp}" does not exist'
                )

            try:
                decomp_arr = mts_decompress(cbin_fp, ch_fp)
                decomp_arr.tofile(bin_fp)
            except Exception as e:
                bin_fp.unlink(missing_ok=True)
                raise e
            else:
                decompressed_files.append(bin_fp)

        return decompressed_files

__init__(root_dir)

create neuropixels reader from 'root name' - e.g. the recording:

1
2
3
4
/data/rec_1/npx_g0_t0.imec.ap.meta
/data/rec_1/npx_g0_t0.imec.ap.bin
/data/rec_1/npx_g0_t0.imec.lf.meta
/data/rec_1/npx_g0_t0.imec.lf.bin

would have a 'root name' of:

1
/data/rec_1/npx_g0_t0.imec

only a single recording is read/loaded via the root name & associated meta - no interpretation of g0_t0.imec, etc is performed at this layer.

Source code in element_array_ephys/readers/spikeglx.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def __init__(self, root_dir):
    """
    create neuropixels reader from 'root name' - e.g. the recording:

        /data/rec_1/npx_g0_t0.imec.ap.meta
        /data/rec_1/npx_g0_t0.imec.ap.bin
        /data/rec_1/npx_g0_t0.imec.lf.meta
        /data/rec_1/npx_g0_t0.imec.lf.bin

    would have a 'root name' of:

        /data/rec_1/npx_g0_t0.imec

    only a single recording is read/loaded via the root
    name & associated meta - no interpretation of g0_t0.imec, etc is
    performed at this layer.
    """
    self._apmeta, self._ap_timeseries = None, None
    self._lfmeta, self._lf_timeseries = None, None

    self.root_dir = pathlib.Path(root_dir)

    try:
        meta_filepath = next(pathlib.Path(root_dir).glob("*.ap.meta"))
    except StopIteration:
        raise FileNotFoundError(f"No SpikeGLX file (.ap.meta) found at: {root_dir}")

    self.root_name = meta_filepath.name.replace(".ap.meta", "")

ap_timeseries property

AP data: (sample x channel) Data are stored as np.memmap with dtype: int16 - to convert to microvolts, multiply with self.get_channel_bit_volts('ap')

lf_timeseries property

LFP data: (sample x channel) Data are stored as np.memmap with dtype: int16 - to convert to microvolts, multiply with self.get_channel_bit_volts('lf')

get_channel_bit_volts(band='ap')

Extract the recorded AP and LF channels' int16 to microvolts - no Sync (SY) channels Following the steps specified in: https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip dataVolts = dataInt * Vmax / Imax / gain

Source code in element_array_ephys/readers/spikeglx.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def get_channel_bit_volts(self, band="ap"):
    """
    Extract the recorded AP and LF channels' int16 to microvolts - no Sync (SY) channels
    Following the steps specified in: https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip
            dataVolts = dataInt * Vmax / Imax / gain
    """
    vmax = float(self.apmeta.meta["imAiRangeMax"])

    if band == "ap":
        imax = IMAX[self.apmeta.probe_model]
        imroTbl_data = self.apmeta.imroTbl["data"]
        imroTbl_idx = 3
        chn_ind = self.apmeta.get_recording_channels_indices(exclude_sync=True)

    elif band == "lf":
        imax = IMAX[self.lfmeta.probe_model]
        imroTbl_data = self.lfmeta.imroTbl["data"]
        imroTbl_idx = 4
        chn_ind = self.lfmeta.get_recording_channels_indices(exclude_sync=True)
    else:
        raise ValueError(f'Unsupported band: {band} - Must be "ap" or "lf"')

    # extract channels' gains
    if "imDatPrb_dock" in self.apmeta.meta:
        # NP 2.0; APGain = 80 for all AP (LF is computed from AP)
        chn_gains = [AP_GAIN] * len(imroTbl_data)
    else:
        # 3A, 3B1, 3B2 (NP 1.0)
        chn_gains = [c[imroTbl_idx] for c in imroTbl_data]

    chn_gains = np.array(chn_gains)[chn_ind]

    return vmax / imax / chn_gains * 1e6  # convert to uV as well

extract_spike_waveforms(spikes, channel_ind, n_wf=500, wf_win=(-32, 32))

:param spikes: spike times (in second) to extract waveforms :param channel_ind: channel indices (of shankmap) to extract the waveforms from :param n_wf: number of spikes per unit to extract the waveforms :param wf_win: number of sample pre and post a spike :return: waveforms (in uV) - shape: (sample x channel x spike)

Source code in element_array_ephys/readers/spikeglx.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def extract_spike_waveforms(self, spikes, channel_ind, n_wf=500, wf_win=(-32, 32)):
    """
    :param spikes: spike times (in second) to extract waveforms
    :param channel_ind: channel indices (of shankmap) to extract the waveforms from
    :param n_wf: number of spikes per unit to extract the waveforms
    :param wf_win: number of sample pre and post a spike
    :return: waveforms (in uV) - shape: (sample x channel x spike)
    """
    channel_bit_volts = self.get_channel_bit_volts("ap")[channel_ind]

    data = self.ap_timeseries

    spikes = np.round(spikes * self.apmeta.meta["imSampRate"]).astype(
        int
    )  # convert to sample
    # ignore spikes at the beginning or end of raw data
    spikes = spikes[
        np.logical_and(spikes > -wf_win[0], spikes < data.shape[0] - wf_win[-1])
    ]

    np.random.shuffle(spikes)
    spikes = spikes[:n_wf]
    if len(spikes) > 0:
        # waveform at each spike: (sample x channel x spike)
        spike_wfs = np.dstack(
            [
                data[int(spk + wf_win[0]) : int(spk + wf_win[-1]), channel_ind]
                * channel_bit_volts
                for spk in spikes
            ]
        )
        return spike_wfs
    else:  # if no spike found, return NaN of size (sample x channel x 1)
        return np.full((len(range(*wf_win)), len(channel_ind), 1), np.nan)

SpikeGLXMeta

Source code in element_array_ephys/readers/spikeglx.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
class SpikeGLXMeta:
    def __init__(self, meta_filepath):
        """
        Some good processing references:
            https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip
            https://github.com/jenniferColonell/Neuropixels_evaluation_tools/blob/master/SGLXMetaToCoords.m
        """

        self.fname = meta_filepath
        self.meta = _read_meta(meta_filepath)

        # Infer npx probe model (e.g. 1.0 (3A, 3B) or 2.0)
        probe_model = self.meta.get("imDatPrb_type", 1)
        if probe_model <= 1:
            if "typeEnabled" in self.meta:
                self.probe_model = "neuropixels 1.0 - 3A"
            elif "typeImEnabled" in self.meta:
                self.probe_model = "neuropixels 1.0 - 3B"
        elif probe_model == 1100:
            self.probe_model = "neuropixels UHD"
        elif probe_model == 21:
            self.probe_model = "neuropixels 2.0 - SS"
        elif probe_model == 24:
            self.probe_model = "neuropixels 2.0 - MS"
        else:
            self.probe_model = str(probe_model)

        # Get recording time
        self.recording_time = datetime.strptime(
            self.meta.get("fileCreateTime_original", self.meta["fileCreateTime"]),
            "%Y-%m-%dT%H:%M:%S",
        )
        self.recording_duration = self.meta.get("fileTimeSecs")

        # Get probe serial number - 'imProbeSN' for 3A and 'imDatPrb_sn' for 3B
        try:
            self.probe_SN = self.meta.get("imProbeSN", self.meta.get("imDatPrb_sn"))
        except KeyError:
            raise KeyError(
                "Probe Serial Number not found in"
                ' either "imProbeSN" or "imDatPrb_sn"'
            )
        # Get probe part number
        self.probe_PN = self.meta.get("imDatPrb_pn", "3A")

        # Parse channel info
        self.chanmap = (
            self._parse_chanmap(self.meta["~snsChanMap"])
            if "~snsChanMap" in self.meta
            else None
        )
        self.geommap = (
            self._parse_geommap(self.meta["~snsGeomMap"])
            if "~snsGeomMap" in self.meta
            else None
        )
        self.shankmap = (
            self._parse_shankmap(self.meta["~snsShankMap"])
            if "~snsShankMap" in self.meta
            else None
        )
        self.imroTbl = (
            self._parse_imrotbl(self.meta["~imroTbl"])
            if "~imroTbl" in self.meta
            else None
        )

        if self.shankmap is None and self.geommap is not None:
            self.shankmap = self._transform_geom_to_shank()

        # Channels being recorded, exclude Sync channels - basically a 1-1 mapping to shankmap
        self.recording_channels = np.arange(len(self.imroTbl["data"]))[
            self.get_recording_channels_indices(exclude_sync=True)
        ]

    @staticmethod
    def _parse_chanmap(raw):
        """
        https://github.com/billkarsh/SpikeGLX/blob/master/Markdown/UserManual.md#channel-map
        Parse channel map header structure. Converts:

            '(x,y,z)(c0,x:y)...(cI,x:y),(sy0;x:y)'

        e.g:

            '(384,384,1)(AP0;0:0)...(AP383;383:383)(SY0;768:768)'

        into dict of form:

            {'shape': [x,y,z], 'c0': [x,y], ... }
        """

        res = {}
        for u in (i.rstrip(")").split(";") for i in raw.split("(") if i != ""):
            if (len(u)) == 1:
                res["shape"] = u[0].split(",")
            else:
                res[u[0]] = u[1].split(":")

        return res

    @staticmethod
    def _parse_shankmap(raw):
        """
        The shankmap contains details on the shank info
            for each electrode sites of the sites being recorded only

        https://github.com/billkarsh/SpikeGLX/blob/master/Markdown/UserManual.md#shank-map
        Parse shank map header structure. Converts:

            '(x,y,z)(a:b:c:d)...(a:b:c:d)'

        e.g:

            '(1,2,480)(0:0:192:1)...(0:1:191:1)'

        into dict of form:

            {'shape': [x,y,z], 'data': [[a,b,c,d],...]}
        """
        res = {"shape": None, "data": []}

        for u in (i.rstrip(")") for i in raw.split("(") if i != ""):
            if "," in u:
                res["shape"] = [int(d) for d in u.split(",")]
            else:
                res["data"].append([int(d) for d in u.split(":")])

        return res

    @staticmethod
    def _parse_geommap(raw):
        """
        The shankmap contains details on the shank info
            for each electrode sites of the sites being recorded only
        Parsing from the `~snsGeomMap` (available with SpikeGLX 20230202-phase30 and later)

        https://github.com/billkarsh/SpikeGLX/blob/master/Markdown/Metadata_30.md
        Parse shank map header structure. Converts:

            '(x,y,z)(a:b:c:d)...(a:b:c:d)'
            a: zero-based shank #
            b: x-coordinate (um) of elecrode center
            c: z-coordinate (um) of elecrode center
            d: 0/1 `used` flag (included in spatial average or not)
        e.g:

            '(1,2,480)(0:0:192:1)...(0:1:191:1)'

        into dict of form:

            {'shape': [x,y,z], 'data': [[a,b,c,d],...]}
        """
        res = {"header": None, "data": []}

        for u in (i.rstrip(")") for i in raw.split("(") if i != ""):
            if "," in u:
                res["header"] = [d for d in u.split(",")]
            else:
                res["data"].append([int(d) for d in u.split(":")])

        return res

    @staticmethod
    def _parse_imrotbl(raw):
        """
        The imro table contains info for all electrode sites (no sync)
            for a particular electrode configuration (all 384 sites)
        Note: not all of these 384 sites are necessarily recorded

        https://github.com/billkarsh/SpikeGLX/blob/master/Markdown/UserManual.md#imro-per-channel-settings
        Parse imro tbl structure. Converts:

            '(X,Y,Z)(A B C D E)...(A B C D E)'

        e.g.:

            '(641251209,3,384)(0 1 0 500 250)...(383 0 0 500 250)'

        into dict of form:

            {'shape': (x,y,z), 'data': []}
        """
        res = {"shape": None, "data": []}

        for u in (i.rstrip(")") for i in raw.split("(") if i != ""):
            if "," in u:
                res["shape"] = [int(d) for d in u.split(",")]
            else:
                res["data"].append([int(d) for d in u.split(" ")])

        return res

    def _transform_geom_to_shank(self):
        if self.geommap is None:
            raise ValueError("Geometry Map not available")

        from . import probe_geometry

        probe_params = dict(
            zip(probe_geometry.geom_param_names, probe_geometry.M[self.probe_PN])
        )
        probe_params["probe_type"] = self.probe_PN
        elec_pos_df = probe_geometry.build_npx_probe(**probe_params)

        res = {"shape": self.geommap["header"], "data": []}
        for shank, x_coord, y_coord, is_used in self.geommap["data"]:
            # offset shank pitch
            x_coord += probe_params["shankPitch"] * shank
            matched_elec = elec_pos_df.query(
                f"x_coord=={x_coord} & y_coord=={y_coord} & shank=={shank}"
            )
            shank_col, shank_row = (
                matched_elec.shank_col.iloc[0],
                matched_elec.shank_row.iloc[0],
            )
            res["data"].append([shank, shank_col, shank_row, is_used])

        return res

    def get_recording_channels_indices(self, exclude_sync=False):
        """
        The indices of recorded channels (in chanmap)
         with respect to the channels listed in the imro table
        """
        recorded_chns_ind = [
            int(v[0])
            for k, v in self.chanmap.items()
            if k != "shape" and (not k.startswith("SY") if exclude_sync else True)
        ]
        orig_chns_ind = self.get_original_chans()
        _, _, chns_ind = np.intersect1d(
            orig_chns_ind, recorded_chns_ind, return_indices=True
        )
        return chns_ind

    def get_original_chans(self):
        """
        Because you can selectively save channels, the
        ith channel in the file isn't necessarily the ith acquired channel.
        Use this function to convert from ith stored to original index.

        Credit to https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip
            OriginalChans() function
        """
        if self.meta["snsSaveChanSubset"] == "all":
            # output = int32, 0 to nSavedChans - 1
            channels = np.arange(0, int(self.meta["nSavedChans"]))
        else:
            # parse the channel list self.meta['snsSaveChanSubset']
            channels = np.arange(0)  # empty array
            for channel_range in self.meta["snsSaveChanSubset"].split(","):
                # a block of contiguous channels specified as chan or chan1:chan2 inclusive
                ix = [int(r) for r in channel_range.split(":")]
                assert len(ix) in (
                    1,
                    2,
                ), f"Invalid channel range spec '{channel_range}'"
                channels = np.append(channels, np.r_[ix[0] : ix[-1] + 1])
        return channels

__init__(meta_filepath)

Some good processing references

https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip https://github.com/jenniferColonell/Neuropixels_evaluation_tools/blob/master/SGLXMetaToCoords.m

Source code in element_array_ephys/readers/spikeglx.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
def __init__(self, meta_filepath):
    """
    Some good processing references:
        https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip
        https://github.com/jenniferColonell/Neuropixels_evaluation_tools/blob/master/SGLXMetaToCoords.m
    """

    self.fname = meta_filepath
    self.meta = _read_meta(meta_filepath)

    # Infer npx probe model (e.g. 1.0 (3A, 3B) or 2.0)
    probe_model = self.meta.get("imDatPrb_type", 1)
    if probe_model <= 1:
        if "typeEnabled" in self.meta:
            self.probe_model = "neuropixels 1.0 - 3A"
        elif "typeImEnabled" in self.meta:
            self.probe_model = "neuropixels 1.0 - 3B"
    elif probe_model == 1100:
        self.probe_model = "neuropixels UHD"
    elif probe_model == 21:
        self.probe_model = "neuropixels 2.0 - SS"
    elif probe_model == 24:
        self.probe_model = "neuropixels 2.0 - MS"
    else:
        self.probe_model = str(probe_model)

    # Get recording time
    self.recording_time = datetime.strptime(
        self.meta.get("fileCreateTime_original", self.meta["fileCreateTime"]),
        "%Y-%m-%dT%H:%M:%S",
    )
    self.recording_duration = self.meta.get("fileTimeSecs")

    # Get probe serial number - 'imProbeSN' for 3A and 'imDatPrb_sn' for 3B
    try:
        self.probe_SN = self.meta.get("imProbeSN", self.meta.get("imDatPrb_sn"))
    except KeyError:
        raise KeyError(
            "Probe Serial Number not found in"
            ' either "imProbeSN" or "imDatPrb_sn"'
        )
    # Get probe part number
    self.probe_PN = self.meta.get("imDatPrb_pn", "3A")

    # Parse channel info
    self.chanmap = (
        self._parse_chanmap(self.meta["~snsChanMap"])
        if "~snsChanMap" in self.meta
        else None
    )
    self.geommap = (
        self._parse_geommap(self.meta["~snsGeomMap"])
        if "~snsGeomMap" in self.meta
        else None
    )
    self.shankmap = (
        self._parse_shankmap(self.meta["~snsShankMap"])
        if "~snsShankMap" in self.meta
        else None
    )
    self.imroTbl = (
        self._parse_imrotbl(self.meta["~imroTbl"])
        if "~imroTbl" in self.meta
        else None
    )

    if self.shankmap is None and self.geommap is not None:
        self.shankmap = self._transform_geom_to_shank()

    # Channels being recorded, exclude Sync channels - basically a 1-1 mapping to shankmap
    self.recording_channels = np.arange(len(self.imroTbl["data"]))[
        self.get_recording_channels_indices(exclude_sync=True)
    ]

get_recording_channels_indices(exclude_sync=False)

The indices of recorded channels (in chanmap) with respect to the channels listed in the imro table

Source code in element_array_ephys/readers/spikeglx.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def get_recording_channels_indices(self, exclude_sync=False):
    """
    The indices of recorded channels (in chanmap)
     with respect to the channels listed in the imro table
    """
    recorded_chns_ind = [
        int(v[0])
        for k, v in self.chanmap.items()
        if k != "shape" and (not k.startswith("SY") if exclude_sync else True)
    ]
    orig_chns_ind = self.get_original_chans()
    _, _, chns_ind = np.intersect1d(
        orig_chns_ind, recorded_chns_ind, return_indices=True
    )
    return chns_ind

get_original_chans()

Because you can selectively save channels, the ith channel in the file isn't necessarily the ith acquired channel. Use this function to convert from ith stored to original index.

Credit to https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip OriginalChans() function

Source code in element_array_ephys/readers/spikeglx.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def get_original_chans(self):
    """
    Because you can selectively save channels, the
    ith channel in the file isn't necessarily the ith acquired channel.
    Use this function to convert from ith stored to original index.

    Credit to https://billkarsh.github.io/SpikeGLX/Support/SpikeGLX_Datafile_Tools.zip
        OriginalChans() function
    """
    if self.meta["snsSaveChanSubset"] == "all":
        # output = int32, 0 to nSavedChans - 1
        channels = np.arange(0, int(self.meta["nSavedChans"]))
    else:
        # parse the channel list self.meta['snsSaveChanSubset']
        channels = np.arange(0)  # empty array
        for channel_range in self.meta["snsSaveChanSubset"].split(","):
            # a block of contiguous channels specified as chan or chan1:chan2 inclusive
            ix = [int(r) for r in channel_range.split(":")]
            assert len(ix) in (
                1,
                2,
            ), f"Invalid channel range spec '{channel_range}'"
            channels = np.append(channels, np.r_[ix[0] : ix[-1] + 1])
    return channels